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On the Symmetry of the Diffusion Coefficient in
Asymmetric Simple Exclusion
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We prove the symmetry of the diffusion coefficient that appears in the fluctua-
tion-dissipation theorem for asymmetric simple exclusion processes.
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1. INTRODUCTION

The fluctuation-dissipation theorem is the core of Varadhan’s method
for the analysis of non-gradient systems. In the context of asymmet-
ric simple exclusion processes it was first proved by Landim and Yau®
(in d > 3) and was subsequently used to establish the diffusive incompress-
ible limit,® the first order corrections to the hydrodynamic limit,® the
equilibrium fluctuations of the density field,(!) and the diffusive hydrody-
namic limit when the initial density profile is constant along the direction
of the drift.) A conceptually similar approach was also used in the der-
ivation of the hydrodynamic limit for the mean-zero asymmetric simple
exclusion process.?)

The content of the theorem is a decomposition of the (normalized)
particle currents (w;)1gi<q (Which are not of gradient form) into gradi-
ents of the occupation variable and a rapidly fluctuating term. With a suit-
able interpretation it can be formulated in the following equation:

d
wi =Y _ Dij(n(0) —n(e;)) + Lu;. (1)
j=1
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The matrix D= (D;j)1<i,j<a is called the diffusion coefficient and it nat-
urally appears in the PDEs that arise in the hydrodynamic limit. Explicit
and variational formulae for D are available®> and it is known to be a
smooth function of the particle density.”) In this article we prove that D
is symmetric, thus answering the question raised by Landim, Olla and Yau
in ref. 3 and 4.

2. NOTATION AND RESULTS

Let us fix a finite range probability measure p(-) on Z¢, with p(0)=0.
We denote by L the generator of the simple exclusion process, associated
to p(-). L acts on local functions on the state space X={0, 1}** according
to:

LEE =) py—x&x) 1 —&) (fFE) = £E) )

X,y

where:

E(z) if z#x,y,
£ =1 &) if z=y,
E(y) ifz=x.

The symmetric and the anti-symmetric part of p(-) will be denoted by a(-)
and b(-) respectively:

_ px)+ p(—=x)

px)— p(=x)
5 , = -

a(x) >

b(x)=

In order to avoid degeneracies we will assume that the random walk in Z¢
with one step transition probabilities a(y —x) is irreducible, i.e. {x:a(x)>
0} generates the group Z¢. An equivalent formulation of this assumption
is that the matrix §=(Sj;)1<i, j<a defined by S;; Z%ZP(Z)ZZ‘Z]‘ is invert-
ible.

The symmetric part of the generator (denoted by Lf) is given by (2)
with p(-) replaced by a(-). The measures wu, (0< p < 1), defined as Ber-
noulli products of parameter p over the sites of Z¢ are invariant under the
dynamics. We will denote expectations under u, by (), and inner prod-
ucts in L2(i,) by (-, -)p.

The adjoint of L in L2(,up) is the generator L* of the simple exclu-
sion process associated to the law p*(x) = p(—x). Local functions form a
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core of both L and L*, and thus L® extends to a self-adjoint operator in

L2(p).
The particle current along the direction e; is given by:

w; =%;p<z>zis<om —£(2)) — p(—2)ziE(2)(1 —£(0)). 3)

Equation (1) is to be understood in the Hilbert space of fluctuations,
which we define next. Let G, be the space of local functions g such that:

d

— =0.
do

O=p

(8)p=0 and (8o

For a ge§, we define 1,¢ =g(7.&), where 7,£(z) =£(x +z). For any feg,
and i €{l,...,d} we define:

(8 F)p0i=Y (& Tuflpr  ti()=(g, Y XiE(X)),.

X

Set x(p)=p(1 —p) and define

d
(), = sup <2Za,~zi(g>—x<p)a-5a)

acRd i=1

+ /sug (28, F)p.0—(f. (L) f)p0) - 4)

The Hilbert space of fluctuations H(p) is defined as the closure of G,
under ((~))}/ 2 If we denote by Hy the space generated by gradients of the
occupation variable: Ho={>_ «;(&(e;) —£(0)); @ € R?}, then by Theorem
1.4 in ref. 8 we have:

H(p)=Ho+LG,. )

Notice that unless ) zp(z) =0 the currents W; do not belong to the space
G,. Therefore we define the normalized currents w; € G, by:

d
(Wi)e - (6)

w; = Wi —(Wi), —(§0)—p) 7
o=p
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According to (5) there exist coefficients (D;j)1 <, j<a (Which depend on p)
such that:

d
w; — Y Djj x (§(0) —£(e;) € LG ()

Jj=l1

The matrix D=(D;;)1<i j<a is called the diffusion coefficient of the sim-
ple exclusion process. Landim, Olla and Yau proved explicit and varia-
tional formulae for D in ref. 4. In the same paper, as well as in ref. 3, the
authors question whether there exists a choice of p(-) such that D is asym-
metric. The result of this article is the following theorem:

Theorem 1. The diffusion coefficient D defined in (7) is always a
symmetric matrix.

3. SOME PROPERTIES OF H(p)

In this section we review some properties of the Hilbert space of fluc-
tuations that will be useful in the proof of Theorem 1. We begin with the
following lemma.

Lemma 1. If geG, and heZ?, then 7,8 =g in H(p).
Proof. In view of (4) it suffices to show that:

(l) (Thg_gv f)p,OzOvvfegp» (”) ti(Thg_g):()ti:l"" 7d'

Using the translation invariance of u, property (i) follows immediately,
while

D (g — g xiE@)p=hi Y (g, £(X)),.

X

The last expression is trivially zero if p € {0, 1}, while otherwise by differ-
entiating with respect to 6 both sides of the following identity

O\E® /1 _p\1-EW
<g>e=fg<s) I1 (;) (E) dpp(§),

xesupp(g)
we get
d
do

Y (8.5 p=p(8)y+x(p)

X

=0, ()
0=p

(8)o

thus establishing (ii). |
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The following lemma is a generalisation of (5.1) in ref. 4 to the gen-
eral asymmetric simple exclusion, and can be proved by polarization of
(4). The details are left to the reader.

Lemma 2. Let g, f €G, and set V., &(0) = £(0) — &(ex) for k =
1,...,d. Then:

(i) (Ve £(0), Ve, 0))), =X (p)(S™ ke,

d

i) (Vo). Lg)), =—((Ver£(0), L*g)), = Y (S ketuwe, &)p.01
=1

(ii1) (Vo &(0),L'g)), =0,

(iv) ((L°g, f))p=—(8. f)p.0-

4. THE DIFFUSION MATRIX

Recall the definition of the normalised currents w; given in (3) and
(6). It follows by elementary algebra and Lemma 1 that w; = W} — h;,
where

1
Wi @) =5 ) za@E0) —£@),
is the current of the symmetric simple exclusion with generator L*, and

hi€)=)_zib(2)(E(0) — p)(E(2) — p).
Z

Hence, the normalized currents for the reversed process are given by w} =
W' +h;. Let now C(p) (resp. C«(p)) be the real vector space generated by
the currents {w;;i=1,...,d} (resp. {w};i=1,...,d}).

We define the linear operator T (resp. T*) on C(p) + LG, (resp.
C«(p) +L*Gp) by:

d d

TO) aiwi+Lg)= Y  ;SiuVeEO0)+L'g,
i=1 i, k=1

d d
T*O aiwi +L*g)= Y ;S Ve 5(0)+L'g.
i=1 i,k=1
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By Theorem 1.4 in ref. 8 we have: H(p) = C(p)+LG, = C.(p)+ L*Gp.
Now, just as in Lemma 5.4 in ref. 4, T and T* are norm bounded by
1, hence they can be extended to H(p). Furthermore, it follows easily by
computations based on Lemma 2 that 7* is the adjoint of 7 with respect
to ((-,-)), and T*V,&(0) is orthogonal to L_gp. Hence by (7) we get

d
(Wi, T*Ve§0))),, =D Dij{(Ve;§0), T*Ve §0))
i=1
and thus by Lemma 2(i):
x()a=D-Q,
where the matrix Q=(Qjk)1<jk<a IS given by:
0k = (T Ve,;6(0), Veké(o)))p~

We are now ready to proceed with the proof of Theorem 1.

Proof. (of Theorem 1). Let us denote the reflection operator on X
by

R§(2)=§(—2).
The action of R is naturally extended to functions as Rf(§) = f(RE).

Clearly, R?>=1. Furthermore, the following commutation relation can be
readily verified:

RL=L*R. ©)
In particular R commutes with L® and hence, R preserves inner products
in H(p).

Notice that W} are anti-symmetric under R, while h; are R-symmet-
ric. Thus,

Rw; (&) =W/ (€) —hi(§) = —w; (&). (10)

It is a direct consequence of (9), (10), and the observation that RV, £(0)=
=V, 6(0) in H(p) that

RT=T*R.
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Therefore,

Qjk = ((RTV,;£(0), RV, E())
= ((T*RV,;£0), RV,£(0)),
= {(Ve;§(0), TV, £(0))
= Qyj-

So Q and thus the diffusion coefficient D are symmetric matrices. ||

Remarks 1. Even though the fluctuation-dissipation theorem for the
general asymmetric simple exclusion process is only valid in d > 3, the
argument in the proof of Theorem 1 could still be used to infer the sym-
metry of the bulk diffusion coefficient for the mean-zero asymmetric simple
exclusion process, which exhibits diffusive behavior in any dimension.

2. We chose to use the abstract formalism of ref. 4 for the diffusion
coefficient, which, as well as the argument presented here, avoids the use
of duality techniques. It is interesting to note that the same space reflec-
tion considerations can deduce the symmetry of the diffusion coefficient
from the explicit formula for it derived in ref. 5 using duality.

3. The importance of Theorem 1 is underlined by a number of known
results involving the symmetric part of D(p). Let us mention for instance
the variational formulae (6.1) for D* and (D~1)* in ref. 4, or the invari-
ance principle for the position of a second class particle (Theorem 6.2 and
its immediate consequence in ref. 6). Evidently, in view of Theorem 1 these
results can all be restated in terms of D.
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