
DOI: 10.1007/s10955-005-3018-0
Journal of Statistical Physics, Vol. 119, Nos. 3/4, May 2005 (© 2005)

On the Symmetry of the Diffusion Coefficient in
Asymmetric Simple Exclusion
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We prove the symmetry of the diffusion coefficient that appears in the fluctua-
tion-dissipation theorem for asymmetric simple exclusion processes.
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1. INTRODUCTION

The fluctuation-dissipation theorem is the core of Varadhan’s method
for the analysis of non-gradient systems. In the context of asymmet-
ric simple exclusion processes it was first proved by Landim and Yau(8)

(in d � 3) and was subsequently used to establish the diffusive incompress-
ible limit,(2) the first order corrections to the hydrodynamic limit,(3) the
equilibrium fluctuations of the density field,(1) and the diffusive hydrody-
namic limit when the initial density profile is constant along the direction
of the drift.(7) A conceptually similar approach was also used in the der-
ivation of the hydrodynamic limit for the mean-zero asymmetric simple
exclusion process.(9)

The content of the theorem is a decomposition of the (normalized)
particle currents (wi)1� i �d (which are not of gradient form) into gradi-
ents of the occupation variable and a rapidly fluctuating term. With a suit-
able interpretation it can be formulated in the following equation:

wi =
d∑

j=1

Dij (η(0)−η(ej ))+Lui. (1)

1Statistical Laboratory, Centre for Mathematical Sciences, Wilberforce Road, Cambridge
CB3 0WB, United Kingdom; e-mail: michail@statslab.cam.ac.uk

853

0022-4715/05/0500-0853/0 © 2005 Springer Science+Business Media, Inc.



854 Loulakis

The matrix D = (Dij )1� i,j �d is called the diffusion coefficient and it nat-
urally appears in the PDEs that arise in the hydrodynamic limit. Explicit
and variational formulae for D are available(4,5) and it is known to be a
smooth function of the particle density.(5) In this article we prove that D

is symmetric, thus answering the question raised by Landim, Olla and Yau
in ref. 3 and 4.

2. NOTATION AND RESULTS

Let us fix a finite range probability measure p(·) on Z
d , with p(0)=0.

We denote by L the generator of the simple exclusion process associated
to p(·). L acts on local functions on the state space X={0,1}Z

d
according

to:

Lf (ξ)=
∑

x,y

p(y −x) ξ(x) (1− ξ(y)) (f (ξx,y)−f (ξ)) (2)

where:

ξx,y(z)=





ξ(z) if z �=x, y,

ξ(x) if z=y,

ξ(y) if z=x.

The symmetric and the anti-symmetric part of p(·) will be denoted by a(·)
and b(·) respectively:

a(x)= p(x)+p(−x)

2
, b(x)= p(x)−p(−x)

2
.

In order to avoid degeneracies we will assume that the random walk in Z
d

with one step transition probabilities a(y −x) is irreducible, i.e. {x :a(x)>

0} generates the group Z
d . An equivalent formulation of this assumption

is that the matrix S = (Sij )1� i,j �d defined by Sij = 1
2

∑
p(z)zizj is invert-

ible.
The symmetric part of the generator (denoted by Ls) is given by (2)

with p(·) replaced by a(·). The measures µρ (0 � ρ � 1), defined as Ber-
noulli products of parameter ρ over the sites of Z

d are invariant under the
dynamics. We will denote expectations under µρ by 〈·〉ρ and inner prod-
ucts in L2(µρ) by 〈·, ·〉ρ .

The adjoint of L in L2(µρ) is the generator L∗ of the simple exclu-
sion process associated to the law p∗(x)=p(−x). Local functions form a
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core of both L and L∗, and thus Ls extends to a self-adjoint operator in
L2(µρ).

The particle current along the direction ei is given by:

Wi = 1
2

∑

z

p(z)ziξ(0)(1− ξ(z))−p(−z)ziξ(z)(1− ξ(0)). (3)

Equation (1) is to be understood in the Hilbert space of fluctuations,
which we define next. Let Gρ be the space of local functions g such that:

〈g〉ρ =0 and
d

dθ
〈g〉θ

∣∣∣∣
θ=ρ

=0.

For a g∈Gρ we define τxg=g(τxξ), where τxξ(z)=ξ(x +z). For any f ∈Gρ

and i ∈{1, . . . , d} we define:

〈g, f 〉ρ,0 :=
∑

x

〈g, τxf 〉ρ, ti(g)=〈g,
∑

x

xiξ(x)〉ρ.

Set χ(ρ)=ρ(1−ρ) and define

〈〈g〉〉ρ = sup
α∈Rd

(
2

d∑

i=1

αiti(g)−χ(ρ)α ·Sα

)

+ sup
f ∈Gρ

(
2〈g, f 〉ρ,0 −〈f, (−Ls)f 〉ρ,0

)
. (4)

The Hilbert space of fluctuations H(ρ) is defined as the closure of Gρ

under 〈〈·〉〉1/2
ρ . If we denote by H0 the space generated by gradients of the

occupation variable: H0 = {∑αi(ξ(ei) − ξ(0)); α ∈ R
d}, then by Theorem

1.4 in ref. 8 we have:

H(ρ)=H0 +LGρ. (5)

Notice that unless
∑

zp(z)=0 the currents Wi do not belong to the space
Gρ . Therefore we define the normalized currents wi ∈Gρ by:

wi =Wi −〈Wi〉ρ − (ξ(0)−ρ)
d

dθ
〈Wi〉θ

∣∣∣∣
θ=ρ

. (6)
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According to (5) there exist coefficients (Dij )1� i,j �d (which depend on ρ)
such that:

wi −
d∑

j=1

Dij × (ξ(0)− ξ(ej ))∈LGρ. (7)

The matrix D = (Dij )1� i,j �d is called the diffusion coefficient of the sim-
ple exclusion process. Landim, Olla and Yau proved explicit and varia-
tional formulae for D in ref. 4. In the same paper, as well as in ref. 3, the
authors question whether there exists a choice of p(·) such that D is asym-
metric. The result of this article is the following theorem:

Theorem 1. The diffusion coefficient D defined in (7) is always a
symmetric matrix.

3. SOME PROPERTIES OF H(ρ)

In this section we review some properties of the Hilbert space of fluc-
tuations that will be useful in the proof of Theorem 1. We begin with the
following lemma.

Lemma 1. If g ∈Gρ and h∈Z
d , then τhg =g in H(ρ).

Proof. In view of (4) it suffices to show that:

(i) 〈τhg −g, f 〉ρ,0 =0,∀f ∈Gρ, (ii) ti(τhg −g)=0, i =1, . . . , d.

Using the translation invariance of µρ property (i) follows immediately,
while

∑

x

〈τhg −g, xiξ(x)〉ρ =hi

∑

x

〈g, ξ(x)〉ρ.

The last expression is trivially zero if ρ ∈{0,1}, while otherwise by differ-
entiating with respect to θ both sides of the following identity

〈g〉θ =
∫

g(ξ)
∏

x∈supp(g)

(
θ

ρ

)ξ(x)( 1− θ

1−ρ

)1−ξ(x)

dµρ(ξ),

we get

∑

x

〈g, ξ(x)〉ρ =ρ〈g〉ρ +χ(ρ)
d

dθ
〈g〉θ

∣∣∣∣
θ=ρ

=0, (8)

thus establishing (ii).
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The following lemma is a generalisation of (5.1) in ref. 4 to the gen-
eral asymmetric simple exclusion, and can be proved by polarization of
(4). The details are left to the reader.

Lemma 2. Let g, f ∈ Gρ and set ∇ek
ξ(0) = ξ(0) − ξ(ek) for k =

1, . . . , d. Then:

(i) 〈〈∇ek
ξ(0),∇e�

ξ(0)〉〉ρ =χ(ρ)(S−1)k�,

(ii) 〈〈∇ek
ξ(0),Lg〉〉ρ =−〈〈∇ek

ξ(0),L∗g〉〉ρ =
d∑

�=1

(S−1)k�〈w�, g〉ρ,0,

(iii) 〈〈∇ek
ξ(0),Lsg〉〉ρ =0,

(iv) 〈〈Lsg, f 〉〉ρ =−〈g, f 〉ρ,0.

4. THE DIFFUSION MATRIX

Recall the definition of the normalised currents wi given in (3) and
(6). It follows by elementary algebra and Lemma 1 that wi = Ws

i − hi ,
where

Ws
i (ξ)= 1

2

∑
zia(z)(ξ(0)− ξ(z)),

is the current of the symmetric simple exclusion with generator Ls , and

hi(ξ)=
∑

z

zib(z)(ξ(0)−ρ)(ξ(z)−ρ).

Hence, the normalized currents for the reversed process are given by w∗
i =

Ws
i +hi . Let now C(ρ) (resp. C∗(ρ)) be the real vector space generated by

the currents {wi; i =1, . . . , d} (resp. {w∗
i ; i =1, . . . , d}).

We define the linear operator T (resp. T ∗) on C(ρ) + LGρ (resp.
C∗(ρ)+L∗Gρ) by:

T (

d∑

i=1

αiwi +Lg)=
d∑

i,k=1

αiSik∇ek
ξ(0)+Lsg,

T ∗(
d∑

i=1

αiw
∗
i +L∗g)=

d∑

i,k=1

αiSik∇ek
ξ(0)+Lsg.
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By Theorem 1.4 in ref. 8 we have: H(ρ) = C(ρ)+LGρ = C∗(ρ)+L∗Gρ.
Now, just as in Lemma 5.4 in ref. 4, T and T ∗ are norm bounded by
1, hence they can be extended to H(ρ). Furthermore, it follows easily by
computations based on Lemma 2 that T ∗ is the adjoint of T with respect
to 〈〈·, ·〉〉ρ and T ∗∇ek

ξ(0) is orthogonal to LGρ . Hence by (7) we get

〈〈wi, T
∗∇ek

ξ(0)〉〉ρ =
d∑

i=1

Dij 〈〈∇ej
ξ(0), T ∗∇ek

ξ(0)〉〉
ρ
,

and thus by Lemma 2(i):

χ(ρ)Id =D ·Q,

where the matrix Q= (Qjk)1� j,k �d is given by:

Qjk =〈〈T ∇ej
ξ(0),∇ek

ξ(0)〉〉
ρ
.

We are now ready to proceed with the proof of Theorem 1.

Proof. (of Theorem 1). Let us denote the reflection operator on X

by

Rξ(z)= ξ(−z).

The action of R is naturally extended to functions as Rf (ξ) = f (Rξ).
Clearly, R2 = 1. Furthermore, the following commutation relation can be
readily verified:

RL=L∗R. (9)

In particular R commutes with Ls and hence, R preserves inner products
in H(ρ).

Notice that Ws
i are anti-symmetric under R, while hi are R-symmet-

ric. Thus,

Rwi(ξ)=−Ws
i (ξ)−hi(ξ)=−w∗

i (ξ). (10)

It is a direct consequence of (9), (10), and the observation that R∇ek
ξ(0)=

−∇ek
ξ(0) in H(ρ) that

RT =T ∗R.
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Therefore,

Qjk = 〈〈RT ∇ej
ξ(0),R∇ek

ξ(0)〉〉
ρ

= 〈〈T ∗R∇ej
ξ(0),R∇ek

ξ(0)〉〉
ρ

= 〈〈∇ej
ξ(0), T ∇ek

ξ(0)〉〉
ρ

= Qkj .

So Q and thus the diffusion coefficient D are symmetric matrices.

Remarks 1. Even though the fluctuation-dissipation theorem for the
general asymmetric simple exclusion process is only valid in d � 3, the
argument in the proof of Theorem 1 could still be used to infer the sym-
metry of the bulk diffusion coefficient for the mean-zero asymmetric simple
exclusion process, which exhibits diffusive behavior in any dimension.

2. We chose to use the abstract formalism of ref. 4 for the diffusion
coefficient, which, as well as the argument presented here, avoids the use
of duality techniques. It is interesting to note that the same space reflec-
tion considerations can deduce the symmetry of the diffusion coefficient
from the explicit formula for it derived in ref. 5 using duality.

3. The importance of Theorem 1 is underlined by a number of known
results involving the symmetric part of D(ρ). Let us mention for instance
the variational formulae (6.1) for Ds and (D−1)s in ref. 4, or the invari-
ance principle for the position of a second class particle (Theorem 6.2 and
its immediate consequence in ref. 6). Evidently, in view of Theorem 1 these
results can all be restated in terms of D.
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